Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 290
Filtrar
Más filtros

Medicinas Complementárias
Tipo del documento
Intervalo de año de publicación
1.
Environ Pollut ; 344: 123422, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38272170

RESUMEN

This article reports a comprehensive analytical method for the identification and quantification of a broad range of pesticides in green plant crops. The sample preparation method for pesticides involved an optimization of the QuEChERS-based extraction protocol, with sample mass, volume of added water, and the type of cleanup sorbent as variables. A sorbent combination based on ENVI-Carb and ChloroFiltr was examined. A highly efficient method was developed for the purification of plant extracts with 900 mg MgSO4, 150 mg PSA, and 15 mg ENVI-Carb at the d-SPE stage, combined with gas chromatography and liquid tandem mass spectrometry for the determination of 197 pesticides in crop plants containing chlorophyll. The method was validated in accordance with the requirements of international guidelines SANTE/11312/2021. The method was applied to quantify pesticide residues in 29 pairs of green crop plants and plants from the corresponding crop protection zone to verify whether the zones are effective barriers to prevent pesticides from penetrating outside agricultural areas. The number and types of agrochemical preparations were chosen by farmers. In total, more than 60 one- and several-component pesticide formulations were applied to the crops included in the study. The pesticide residues were detected in 21 crop samples and 3 samples from protection zones. Epoxiconazole, an active substance that was banned for use in 2021, was found in a spring barley sample. Based on the conducted research, the effectiveness of the protection zones has been clearly demonstrated, and it has been proven that environmental migration of pesticides and unauthorized agricultural practices pose a risk to ecosystems.


Asunto(s)
Residuos de Plaguicidas , Plaguicidas , Plaguicidas/análisis , Residuos de Plaguicidas/análisis , Ecosistema , Cromatografía de Gases y Espectrometría de Masas , Espectrometría de Masas en Tándem/métodos , Productos Agrícolas/química , Extracción en Fase Sólida/métodos
2.
J Evid Based Integr Med ; 28: 2515690X231206227, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37822215

RESUMEN

Cassava (Manihot esculenta Crantz) is considered one of the essential tuber crops, serving as a dietary staple food for various populations. This systematic review provides a comprehensive summary of the nutritional and therapeutic properties of cassava, which is an important dietary staple and traditional medicine. The review aims to evaluate and summarize the phytochemical components of cassava and their association with pharmacological activities, traditional uses, and nutritional importance in global food crises. To collect all relevant information, electronic databases; Cochrane Library, PubMed, Scopus, Web of Science, Google Scholar, and Preprint Platforms were searched for studies on cassava from inception until October 2022. A total of 1582 studies were screened, while only 34 were included in this review. The results of the review indicate that cassava has diverse pharmacological activities, including anti-bacterial, anti-cancer, anti-diabetic, anti-diarrheal, anti-inflammatory, hypocholesterolemic effects, and wound healing properties. However, more studies that aim to isolate the phytochemicals in cassava extracts and evaluate their pharmacological property are necessary to further validate their medical and nutritional values.


Asunto(s)
Manihot , Manihot/química , Verduras , Productos Agrícolas/química , Tubérculos de la Planta , Valor Nutritivo
3.
J Food Sci ; 88(8): 3189-3203, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37458291

RESUMEN

Transgenic technology can increase the quantity and quality of vegetable oils worldwide. However, people are skeptical about the safety of transgenic oil-bearing crops and the oils they produce. In order to protect consumers' rights and avoid transgenic oils being adulterated or labeled as nontransgenic oils, the transgenic detection technology of oilseeds and oils needs careful consideration. This paper first summarized the current research status of transgenic technologies implemented at oil-bearing crops. Then, an inspection process was proposed to detect a large number of samples to be the subject rapidly, and various inspection strategies for transgenic oilseeds and oils were summarized according to the process sequence. The detection indicators included oil content, fatty acid, triglyceride, tocopherol, and nucleic acid. The detection technologies involved chromatography, spectroscopy, nuclear magnetic resonance, and polymerase chain reaction. It is hoped that this article can provide crucial technical reference and support for staff engaging in the supervision of transgenic food and for researchers developing fast and efficient monitoring methods in the future.


Asunto(s)
Ácidos Grasos , Aceites de Plantas , Humanos , Aceites de Plantas/química , Ácidos Grasos/química , Productos Agrícolas/química
4.
Sci Total Environ ; 879: 162971, 2023 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-36958551

RESUMEN

Cultivation of mass flowering entomophilous crops benefits from the presence of managed and wild pollinators, who visit flowers to forage on pollen and nectar. However, management of these crops typically includes application of pesticides, the presence of which may pose a hazard for pollinators foraging in an agricultural environment. To determine the levels of potential exposure to pesticides, their presence and concentration in pollen and nectar need assessing, both within and beyond the target crop plants. We selected ten pesticide compounds and one metabolite and analysed their occurrence in a crop (Brassica napus) and a wild plant (Rubus fruticosus agg.), which was flowering in field edges. Nectar and pollen from both plants were collected from five spring and five winter sown B. napus fields in Ireland, and were tested for pesticide residues, using QuEChERS and Liquid Chromatography tandem mass spectrometry (LC-MS/MS). Pesticide residues were detected in plant pollen and nectar of both plants. Most detections were from fields with no recorded application of the respective compounds in that year, but higher concentrations were observed in recently treated fields. Overall, more residues were detected in B. napus pollen and nectar than in the wild plant, and B. napus pollen had the highest mean concentration of residues. All matrices were contaminated with at least three compounds, and the most frequently detected compounds were fungicides. The most common compound mixture was comprised of the fungicides azoxystrobin, boscalid, and the neonicotinoid insecticide clothianidin, which was not recently applied on the fields. Our results indicate that persistent compounds like the neonicotinoids, should be continuously monitored for their presence and fate in the field environment. The toxicological evaluation of the compound mixtures identified in the present study should be performed, to determine their impacts on foraging insects that may be exposed to them.


Asunto(s)
Fungicidas Industriales , Insecticidas , Residuos de Plaguicidas , Plaguicidas , Abejas , Néctar de las Plantas/química , Plaguicidas/análisis , Residuos de Plaguicidas/análisis , Fungicidas Industriales/análisis , Cromatografía Liquida , Espectrometría de Masas en Tándem , Neonicotinoides/análisis , Insecticidas/análisis , Polen/química , Productos Agrícolas/química
5.
Huan Jing Ke Xue ; 44(1): 395-404, 2023 Jan 08.
Artículo en Chino | MEDLINE | ID: mdl-36635827

RESUMEN

Available selenium (Se) in soil was the predominant factor affecting the content of Se in crops. In order to reasonably delineate the Se-rich soil range and propose theoretical guidance for the cultivation of natural Se-rich crops in a region where the surface soils had a high level of available-Se and a low level of total-Se, 8814 samples in surface soil and 195 root-crop matching samples were collected in Shizuishan in northern Ningxia. On the basis of the main line of analysis of available-Se, the following research was conducted: by synthetically studying the total-Se and available-Se in surface soil and root soil, the morphology of Se in surface soil, as well as Se in crops, deep and coordinated analyses of content among total-Se, available-Se, and Se in root-crop matching samples were carried out, and the suitable threshold for Shizuishan was confirmed. A multiple regression model of available-Se was established to determine the main physical and chemical indexes affecting available-Se, which were expected to improve the Se enrichment rate of crops through the enhancement of available-Se. The results demonstrated that ω(Se) and ω(Seavailable)in the surface soil in Shizuishan were 0.26 mg·kg-1 and 12.85 µg·kg-1, respectively, and the characteristics of Se and available-Se in root-crop matching samples could represent those in surface soil. Thus, it was recommended to use 0.24 mg·kg-1 as the suitable threshold of Se-rich soil. The multiple regression model of available-Se showed that the increase in total-Se and soil elements affecting soil fertility could promote the enrichment of available-Se.


Asunto(s)
Selenio , Contaminantes del Suelo , Suelo/química , Productos Agrícolas/química , Contaminantes del Suelo/análisis
6.
Environ Pollut ; 313: 120100, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36075333

RESUMEN

As the only "tropical base of agricultural production" in China, Hainan lsland is vigorously developing high-value agriculture and is becoming the province with the highest proportion of cash crops. However, this intensive farming with large nutrient inputs has caused cropland degradation, nitrogen (N) and phosphorus (P) overloads and water pollution, which have been reversed to initiate the construction of free trade ports. Here, we systematically review the status, driving factors, and environmental impacts of cropland degradation and nutrient overload with quantified evaluations and compared with other global tropics. Over the last 30 years, the soil pH in Hainan decreased by 0.3 units, and the soil organic carbon (SOC) decreased by 20%. This soil degradation has consequently aggravated nutrient losses, caused low use efficiency, and has required farmers add additional large nutrient to maintain harvests. P overuse is more serious than N overuse in Hainan due to the misuse of high P content compound fertilizers. The current N and P usage densities were 4% and 66% higher than the national average per crop season, i.e., 301 kg N ha-1 and 98 kg P ha-1, respectively, and the application rates were even higher for vegetables, i.e., 43% and 115% higher than the national average for vegetables. Consequently, water quality degradation occurred. The nutrient contents of several estuaries have exceeded the Class III standards. Potential improvement strategies are proposed: (i) Organic materials must be recycled to curb the declines in SOC and pH, and more benefits would be obtained by together use of biochar. (ii) Nutrient quotas must be implemented to balance nutrient budgets and reduce excessive surpluses and losses. (iii) The service functions of ecological protection zones for water and soil conservation must be strengthened. These strategies also apply to other global tropics that face similar challenges of soil and ecological degradation.


Asunto(s)
Fertilizantes , Suelo , Agricultura , Carbono , China , Productos Agrícolas/química , Fertilizantes/análisis , Nitrógeno/análisis , Nutrientes/metabolismo , Fósforo/análisis , Suelo/química
7.
Molecules ; 27(4)2022 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-35209127

RESUMEN

Globally, many developing countries are facing silent epidemics of nutritional deficiencies in human beings and animals. The lack of diversity in diet, i.e., cereal-based crops deficient in mineral nutrients is an additional threat to nutritional quality. The present review accounts for the significance of biofortification as a process to enhance the productivity of crops and also an agricultural solution to address the issues of nutritional security. In this endeavor, different innovative and specific biofortification approaches have been discussed for nutrient enrichment of field crops including cereals, pulses, oilseeds and fodder crops. The agronomic approach increases the micronutrient density in crops with soil and foliar application of fertilizers including amendments. The biofortification through conventional breeding approach includes the selection of efficient genotypes, practicing crossing of plants with desirable nutritional traits without sacrificing agricultural and economic productivity. However, the transgenic/biotechnological approach involves the synthesis of transgenes for micronutrient re-translocation between tissues to enhance their bioavailability. Soil microorganisms enhance nutrient content in the rhizosphere through diverse mechanisms such as synthesis, mobilization, transformations and siderophore production which accumulate more minerals in plants. Different sources of micronutrients viz. mineral solutions, chelates and nanoparticles play a pivotal role in the process of biofortification as it regulates the absorption rates and mechanisms in plants. Apart from the quality parameters, biofortification also improved the crop yield to alleviate hidden hunger thus proving to be a sustainable and cost-effective approach. Thus, this review article conveys a message for researchers about the adequate potential of biofortification to increase crop productivity and nourish the crop with additional nutrient content to provide food security and nutritional quality to humans and livestock.


Asunto(s)
Biofortificación/métodos , Productos Agrícolas/química , Micronutrientes/análisis , Factores de Edad , Agricultura , Animales , Biotecnología , Fertilizantes , Seguridad Alimentaria , Alimentos Fortificados , Salud Global , Tecnología Química Verde , Humanos , Desnutrición/epidemiología , Desnutrición/etiología , Minerales/análisis , Minerales/química , Nanotecnología , Valor Nutritivo , Fitomejoramiento , Suelo/química
8.
Molecules ; 27(4)2022 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-35209196

RESUMEN

Traditionally, medicinal plants have long been used as a natural therapy. Plant-derived extracts or phytochemicals have been exploited as food additives and for curing many health-related ailments. The secondary metabolites produced by many plants have become an integral part of human health and have strengthened the value of plant extracts as herbal medicines. To fulfil the demand of health care systems, food and pharmaceutical industries, interest in the cultivation of precious medicinal plants to harvest bio-active compounds has increased considerably worldwide. To achieve maximum biomass and yield, growers generally apply chemical fertilizers which have detrimental impacts on the growth, development and phytoconstituents of such therapeutically important plants. Application of beneficial rhizosphere microbiota is an alternative strategy to enhance the production of valuable medicinal plants under both conventional and stressed conditions due to its low cost, environmentally friendly behaviour and non-destructive impact on fertility of soil, plants and human health. The microbiological approach improves plant growth by various direct and indirect mechanisms involving the abatement of various abiotic stresses. Given the negative impacts of fertilizers and multiple benefits of microbiological resources, the role of plant growth promoting rhizobacteria (PGPR) in the production of biomass and their impact on the quality of bio-active compounds (phytochemicals) and mitigation of abiotic stress to herbal plants have been described in this review. The PGPR based enhancement in the herbal products has potential for use as a low cost phytomedicine which can be used to improve health care systems.


Asunto(s)
Bacterias/crecimiento & desarrollo , Bioprospección , Productos Agrícolas , Fitoquímicos , Plantas Medicinales , Rizosfera , Microbiología del Suelo , Productos Agrícolas/química , Productos Agrícolas/crecimiento & desarrollo , Productos Agrícolas/microbiología , Humanos , Fitoquímicos/química , Fitoquímicos/uso terapéutico , Plantas Medicinales/química , Plantas Medicinales/crecimiento & desarrollo , Plantas Medicinales/microbiología
9.
Environ Geochem Health ; 44(8): 2355-2373, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34365568

RESUMEN

More than 2 billion people worldwide suffer from micronutrient malnutrition, sometimes known as hidden hunger. Zn malnutrition affects around a third of the world's population. The physicochemical features of soil, which limit the availability of Zn to plants, cause Zn deficiency. The eating habits of certain populations are more depended on Zn-deficient staple foods. Due to the high expense and certain interventions such as diet diversification, zinc supplementation and food fortification cannot be achieved in disadvantaged populations. Biofortification is the most practical technique for alleviating Zn malnutrition. Seed priming with nutrients is a promising biofortification approach for edible crops. Seed nutripriming with zinc is a cost-effective and environmentally benign approach of biofortification. Seeds can be nutriprimed with Zn using a variety of methods such as Zn fertilisers, Zn chelated compounds and Zn nanoparticles. Nutripriming with nanoparticles is gaining popularity these days due to its numerous advantages and vast biofortification potential. Seeds enriched with Zn also aid plant performance in Zn-deficient soil. Zn an essential trace element can regulate physiological, biochemical and molecular processes of plant cells and thus can enhance germination, growth, yield and bioavailable Zn in edible crops. Moreover, zinc emerges as an important element of choice for the management of COVID-19 symptoms.


Asunto(s)
COVID-19 , Desnutrición , Productos Agrícolas/química , Humanos , Desnutrición/prevención & control , Semillas/química , Suelo/química , Zinc/análisis
10.
Toxins (Basel) ; 13(12)2021 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-34941708

RESUMEN

More still needs to be learned regards the relative contamination of heavy metals and pesticide residues, particularly those found in widely consumed Nigerian food crops like cereals, vegetables, and tubers. In this current study, the heavy metals and pesticide residues detectable in widely consumed Nigerian food crops were respectively quantified using atomic absorption spectroscopy (AAS) and gas chromatography (GC). Specifically, the widely consumed Nigerian food crops included cereals (rice, millet, and maize), legume (soybean), tubers (yam and cassava), as well as leaf (fluted pumpkin, Amaranthus leaf, waterleaf, and scent leaf) and fruit vegetables (okro, cucumber, carrot, and watermelon). Results showed that the detected heavy metals included arsenic (As), cadmium (Cd), chromium (Cr), cobalt (Co), iron (Fe), lead (Pb), manganese (Mn), mercury (Hg), and nickel (Ni), whereas the pesticide residues included Aldrin, Carbofuran, g-chlordane, Chlorpyrifos, DichloroBiphenyl, Dichlorodiphenyldichloroethane (DDD), Dichlorodiphenyltrichloroethane (DDT), Dichlorvos, Endosulfan, Heptachlor, Hexachlorobenzene (HCB), Isopropylamine, Lindane, t-nonachlor, and Profenofos. Across the studied food crops, the concentrations of heavy metals and pesticides were varied, with different trends as they largely fell below the established maximum permissible limits, and with some exceptions. Our findings suggest there could be a somewhat gradual decline in the concentration of the heavy metals and pesticide residues of these studied food crops when compared to previously published reports specific to Nigeria. To help substantiate this observation and supplement existing information, further investigations are required into the concentration of these heavy metals and pesticide residues specific to these studied food crops at other parts of the country.


Asunto(s)
Contaminación de Alimentos/análisis , Metales Pesados/análisis , Residuos de Plaguicidas/análisis , Cromatografía de Gases , Productos Agrícolas/química , Nigeria , Espectrofotometría Atómica
11.
PLoS One ; 16(12): e0260960, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34928963

RESUMEN

Environmental stresses may alter the nutritional profile and economic value of crops. Chemical fertilizers and phytohormones are major sources which can enhance the canola production under stressful conditions. Physio-biochemical responses of canola altered remarkably with the use of nitrogen/phosphorus/potassium (N/P/K) fertilizers and plant growth regulators (PGRs) under drought stress. The major aim of current study was to evaluate nutritional quality and physio-biochemical modulation in canola (Brassica napus L.) from early growth to seed stage with NPK and PGRs in different water regimes. To monitor biochemical and physiological processes in canola, two season field experiment was conducted as spilt plot under randomized complete block design (RCBD) with four treatments (Control, Chemical fertilizers [N (90 kg/ha), P and K (45 kg ha-1)], PGRs; indole acetic acid (IAA) 15g ha-1, gibberellic acid (GA3) 15g ha-1 and the combination of NPK and PGRs] under different irrigations regimes (60, 100, 120, 150 mm evaporations). Water stress enhanced peroxidase (POD), catalase (CAT), superoxide dismutase (SOD), polyphenol oxidase (PPO), soluble sugar, malondialdehyde (MDA), proline contents as well as leaf temperature while substantially reduced leaf water contents (21%), stomatal conductance (50%), chlorophyll contents (10-67%), membrane stability index (24%) and grain yield (30%) of canola. However, the combined application of NPK and PGR further increased the enzymatic antioxidant pool, soluble sugars, along with recovery of leaf water contents, chlorophyll contents, stomatal conductance and membrane stability index but decreased the proline contents and leaf temperature at different rate of evaporation. There is positive interaction of applied elicitors to the water stress in canola except leaf area. The outcomes depicted that the combination of NPK with PGRs improved the various morpho-physiological as well as biochemical parameters and reduced the pressure of chemical fertilizers cost about 60%. It had also reduced the deleterious effect of water limitation on the physiology and grain yield and oil contents of canola in field experiments.


Asunto(s)
Brassica napus/fisiología , Sequías , Fertilizantes , Reguladores del Crecimiento de las Plantas/farmacología , Brassica napus/química , Brassica napus/efectos de los fármacos , Productos Agrícolas/química , Productos Agrícolas/efectos de los fármacos , Productos Agrícolas/fisiología , Nitrógeno/metabolismo , Fósforo/metabolismo , Potasio/metabolismo , Estrés Fisiológico
12.
Molecules ; 26(23)2021 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-34885990

RESUMEN

(1) Background: Solid phase microextraction (SPME)-Arrow is a new extraction technology recently employed in the analysis of volatiles in food materials. Grape volatile organic compounds (VOC) have a crucial role in the winemaking industry due to their sensory characteristics of wine.; (2) Methods: Box-Behnken experimental design and response surface methodology were used to optimise SPME-Arrow conditions (extraction temperature, incubation time, exposure time, desorption time). Analyzed VOCs were free VOCs directly from grape skins and bound VOCs released from grape skins by acid hydrolysis.; (3) Results: The most significant factors were extraction temperature and exposure time for both free and bound VOCs. For both factors, an increase in their values positively affected the extraction efficiency for almost all classes of VOCs. For free VOCs, the optimum extraction conditions are: extraction temperature 60 °C, incubation time 20 min, exposure time 49 min, and desorption time 7 min, while for the bound VOCs are: extraction temperature 60 °C, incubation time 20 min, exposure time 60 min, desorption time 7 min.; (4) Conclusions: Application of the optimized method provides a powerful tool in the analysis of major classes of volatile organic compounds from grape skins, which can be applied to a large number of samples.


Asunto(s)
Productos Agrícolas/química , Cromatografía de Gases y Espectrometría de Masas/normas , Extractos Vegetales/análisis , Microextracción en Fase Sólida/normas , Vitis/química , Compuestos Orgánicos Volátiles/análisis , Ácidos/análisis , Ácidos/aislamiento & purificación , Alcoholes/análisis , Alcoholes/aislamiento & purificación , Calor , Monoterpenos/análisis , Monoterpenos/aislamiento & purificación , Norisoprenoides/análisis , Norisoprenoides/aislamiento & purificación , Extractos Vegetales/aislamiento & purificación , Compuestos Orgánicos Volátiles/aislamiento & purificación , Vino/análisis
13.
BMC Plant Biol ; 21(1): 550, 2021 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-34809576

RESUMEN

BACKGROUND: Pineapple (Ananas comosus L. Merr.) is the third most important tropical fruit in China. In other crops, farmers can easily judge the nutritional requirements from leaf color. However, concerning pineapple, it is difficult due to the variation in leaf color of the cultivated pineapple varieties. A detailed understanding of the mechanisms of nutrient transport, accumulation, and assimilation was targeted in this study. We explored the D-leaf nitrogen (N), phosphorus (P), and potassium (K) contents, transcriptome, and metabolome of seven pineapple varieties. RESULTS: Significantly higher N, P, and K% contents were observed in Bali, Caine, and Golden pineapple. The transcriptome sequencing of 21 libraries resulted in the identification of 14,310 differentially expressed genes in the D-leaves of seven pineapple varieties. Genes associated with N transport and assimilation in D-leaves of pineapple was possibly regulated by nitrate and ammonium transporters, and glutamate dehydrogenases play roles in N assimilation in arginine biosynthesis pathways. Photosynthesis and photosynthesis-antenna proteins pathways were also significantly regulated between the studied genotypes. Phosphate transporters and mitochondrial phosphate transporters were differentially regulated regarding inorganic P transport. WRKY, MYB, and bHLH transcription factors were possibly regulating the phosphate transporters. The observed varying contents of K% in the D-leaves was associated to the regulation of K+ transporters and channels under the influence of Ca2+ signaling. The UPLC-MS/MS analysis detected 873 metabolites which were mainly classified as flavonoids, lipids, and phenolic acids. CONCLUSIONS: These findings provide a detailed insight into the N, P, K% contents in pineapple D-leaf and their transcriptomic and metabolomic signatures.


Asunto(s)
Ananas/química , Ananas/genética , Productos Agrícolas/química , Productos Agrícolas/genética , Genotipo , Metabolómica , Hojas de la Planta/química , Transcriptoma , China , Regulación de la Expresión Génica de las Plantas , Variación Genética , Nitrógeno/química , Fósforo/química , Hojas de la Planta/genética , Potasio/química
14.
BMC Plant Biol ; 21(1): 506, 2021 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-34727870

RESUMEN

BACKGROUND: Nitrogen (N) fertilizer is commonly considered as one of the most important limiting factors in the agricultural production. As a result, a large amount of N fertilizer is used to improve the yield in modern tea production. Unfortunately, the large amount of N fertilizer input has led to increased plant nitrogen-tolerance and decreased amplitude of yield improvement, which results in significant N loss, energy waste and environment pollution. However, the effects of N-deficiency on the metabolic profiles of tea leaves and roots are not well understood. RESULTS: In this study, seedlings of Camellia sinensis (L.) O. Kuntze Chunlv 2 were treated with 3 mM NH4NO3 (Control) or without NH4NO3 (N-deficiency) for 4 months by sandy culture. The results suggested that N-deficiency induced tea leaf chlorosis, impaired biomass accumulation, decreased the leaf chlorophyll content and N absorption when they were compared to the Control samples. The untargeted metabolomics based on GC-TOF/MS approach revealed a discrimination of the metabolic profiles between N-deficient tea leaves and roots. The identification and classification of the altered metabolites indicated that N deficiency upregulated the relative abundances of most phenylpropanoids and organic acids, while downregulated the relative abundances of most amino acids in tea leaves. Differentially, N-deficiency induced the accumulation of most carbohydrates, organic acids and amino acids in tea roots. The potential biomarkers screened in N-deficient leaves compared to Control implied that N deficiency might reduce the tea quality. Unlike the N-deficient leaves, the potential biomarkers in N-deficient roots indicated an improved stress response might occur in tea roots. CONCLUSIONS: The results demonstrated N deficiency had different effects on the primary and secondary metabolism in tea leaves and roots. The findings of this study will facilitate a comprehensive understanding of the N-deficient tea plants and provide a valuable reference for the optimized N nutrient management and the sustainable development in the tea plantations.


Asunto(s)
Camellia sinensis/química , Camellia sinensis/crecimiento & desarrollo , Camellia sinensis/metabolismo , Nitrógeno/deficiencia , Nitrógeno/metabolismo , Hojas de la Planta/metabolismo , Raíces de Plantas/metabolismo , Cromatografía de Gases , Productos Agrícolas/química , Productos Agrícolas/crecimiento & desarrollo , Productos Agrícolas/metabolismo , Espectrometría de Masas , Metaboloma , Metabolómica , Hojas de la Planta/química , Hojas de la Planta/crecimiento & desarrollo , Raíces de Plantas/química , Raíces de Plantas/crecimiento & desarrollo
15.
BMC Plant Biol ; 21(1): 384, 2021 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-34416854

RESUMEN

BACKGROUND: C. sinensis is an important economic crop with fluoride over-accumulation in its leaves, which poses a serious threat to human health due to its leaf consumption as tea. Recently, our study has indicated that cell wall proteins (CWPs) probably play a vital role in fluoride accumulation/detoxification in C. sinensis. However, there has been a lack in CWP identification and characterization up to now. This study is aimed to characterize cell wall proteome of C. sinensis leaves and to develop more CWPs related to stress response. A strategy of combined cell wall proteomics and N-glycoproteomics was employed to investigate CWPs. CWPs were extracted by sequential salt buffers, while N-glycoproteins were enriched by hydrophilic interaction chromatography method using C. sinensis leaves as a material. Afterwards all the proteins were subjected to UPLC-MS/MS analysis. RESULTS: A total of 501 CWPs and 195 CWPs were identified respectively by cell wall proteomics and N-glycoproteomics profiling with 118 CWPs in common. Notably, N-glycoproteomics is a feasible method for CWP identification, and it can enhance CWP coverage. Among identified CWPs, proteins acting on cell wall polysaccharides constitute the largest functional class, most of which might be involved in cell wall structure remodeling. The second largest functional class mainly encompass various proteases related to CWP turnover and maturation. Oxidoreductases represent the third largest functional class, most of which (especially Class III peroxidases) participate in defense response. As expected, identified CWPs are mainly related to plant cell wall formation and defense response. CONCLUSION: This was the first large-scale investigation of CWPs in C. sinensis through cell wall proteomics and N-glycoproteomics. Our results not only provide a database for further research on CWPs, but also an insight into cell wall formation and defense response in C. sinensis.


Asunto(s)
Camellia sinensis/química , Pared Celular/química , Fluoruros/análisis , Glicoproteínas/análisis , Hojas de la Planta/química , Proteínas de Plantas/análisis , China , Productos Agrícolas/química , Proteómica
16.
Ecotoxicol Environ Saf ; 219: 112336, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34044310

RESUMEN

Heavy metals are widely distributed in the environment due to the natural processes and anthropogenic human activities. Their migration into no contaminated areas contributing towards pollution of the ecosystems e.g. soils, plants, water and air. It is recognized that heavy metals due to their toxicity, long persistence in nature can accumulate in the trophic chain and cause organism dysfunction. Although the popularity of herbal medicine is rapidly increasing all over the world heavy metal toxicity has a great impact and importance on herbal plants and consequently affects the quality of herbal raw materials, herbal extracts, the safety and marketability of drugs. Effective control of heavy metal content in herbal plants using in pharmaceutical and food industries has become indispensable. Therefore, this review describes various important factors such as ecological and environmental pollution, cultivation and harvest of herbal plants and manufacturing processes which effects on the quality of herbal plants and then on Chinese herbal medicines which influence human health. This review also proposes possible management strategies to recover environmental sustainability and medication safety. About 276 published studies (1988-2021) are reviewed in this paper.


Asunto(s)
Productos Agrícolas/química , Metales Pesados/análisis , Plantas Medicinales/química , Contaminantes del Suelo/análisis , China , Medicamentos Herbarios Chinos , Ecosistema , Monitoreo del Ambiente , Contaminación Ambiental , Humanos , Suelo
17.
Sci Rep ; 11(1): 10041, 2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33976317

RESUMEN

Plants with medicinal properties play an increasingly important role in food and pharmaceutical industries for their functions on disease prevention and treatment. This study characterizes the phenolic composition and antioxidant activity of seven medicinal and food plants, including the leaves of Salvia officinalis L., Rosmarinus officinalis L., Olea europaea L., and Punica granatum L., as well as the leaves and young stems of Ruta graveolens L., Mentha piperita L., and Petroselinum crispum, Mill., by using colorimetric, chromatographic, and spectrophotometric assays. Results revealed that the hydro-methanolic leaf extracts of P. granatum (pomegranate) displayed the highest content of total phenols (199.26 mg gallic acid per gram of plant dry weight), ortho-diphenols (391.76 mg gallic acid per gram of plant dry weight), and tannins (99.20 mg epicatechin per gram of plant dry weight), besides a higher content of flavonoids (24 mg catechin per gram of plant dry weight). The highest antioxidant capacity measured by ABTS, DPPH, and FRAP (2.14, 2.27, and 2.33 mM Trolox per gram of plant dry weight, respectively) methods was also obtained in pomegranate leaf extracts, being 4-200 times higher than the other species. Such potent antioxidant activity of pomegranate leaves can be ascribed to the presence of different types of phenolic compounds and the high content in tannins, whilst phenolic acids and flavonoids were found to be the dominant phenolic classes of the other six plants. Consequently, despite the well-known antioxidant properties of these plant species, our study suggests pomegranate leaf can stand out as a relatively more valuable plant source of natural bioactive molecules for developing novel functional food-pharma ingredients, with potential for not only promoting human health but also improving bio-valorization and environment.


Asunto(s)
Antioxidantes/análisis , Lamiaceae/química , Fenoles/análisis , Fitoquímicos/análisis , Plantas Medicinales/química , Productos Agrícolas/química , Análisis de los Alimentos , Olea/química , Petroselinum/química , Hojas de la Planta/química , Granada (Fruta)/química , Ruta/química
18.
Carbohydr Polym ; 265: 118070, 2021 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-33966834

RESUMEN

Potato is a major food crop with enormous biomass straw, but lignocellulose recalcitrance causes a costly bioethanol conversion. Here, we selected the cytochimera (Cyt) potato samples showing significantly-modified lignocellulose and much increased soluble sugars and starch by 2-4 folds in mature straws. Under two pretreatments (8 min liquid hot water; 5% CaO) at minimized conditions, the potato Cyt straw showed complete enzymatic saccharification. Further performing yeast fermentation with all hexoses released from soluble sugars, starch and lignocellulose in the Cyt straw, this study achieved a maximum bioethanol yield of 24 % (% dry matter), being higher than those of other bioenergy crops as previously reported. Hence, this study has proposed a novel mechanism model on the reduction of major lignocellulose recalcitrance and regulation of carbon assimilation to achieve cost-effective bioethanol production under optimal pretreatments. This work also provides a sustainable strategy for utilization of potato straws with minimum waste release.


Asunto(s)
Biocombustibles , Etanol/metabolismo , Lignina/química , Solanum tuberosum/química , Almidón/química , Biomasa , Celulasa/metabolismo , Celulosa/química , Productos Agrícolas/química , Etanol/química , Fermentación , Hidrólisis , Lignina/metabolismo , Poliploidía , Saccharomyces cerevisiae/metabolismo , Solanum tuberosum/genética , Almidón/metabolismo
19.
BMC Infect Dis ; 21(1): 452, 2021 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-34011281

RESUMEN

BACKGROUND: COVID-19 has impacted populations around the world, with the fatality rate varying dramatically across countries. Selenium, as one of the important micronutrients implicated in viral infections, was suggested to play roles. METHODS: An ecological study was performed to assess the association between the COVID-19 related fatality and the selenium content both from crops and topsoil, in China. RESULTS: Totally, 14,045 COVID-19 cases were reported from 147 cities during 8 December 2019-13 December 2020 were included. Based on selenium content in crops, the case fatality rates (CFRs) gradually increased from 1.17% in non-selenium-deficient areas, to 1.28% in moderate-selenium-deficient areas, and further to 3.16% in severe-selenium-deficient areas (P = 0.002). Based on selenium content in topsoil, the CFRs gradually increased from 0.76% in non-selenium-deficient areas, to 1.70% in moderate-selenium-deficient areas, and further to 1.85% in severe-selenium-deficient areas (P < 0.001). The zero-inflated negative binomial regression model showed a significantly higher fatality risk in cities with severe-selenium-deficient selenium content in crops than non-selenium-deficient cities, with incidence rate ratio (IRR) of 3.88 (95% CIs: 1.21-12.52), which was further confirmed by regression fitting the association between CFR of COVID-19 and selenium content in topsoil, with the IRR of 2.38 (95% CIs: 1.14-4.98) for moderate-selenium-deficient cities and 3.06 (1.49-6.27) for severe-selenium-deficient cities. CONCLUSIONS: Regional selenium deficiency might be related to an increased CFR of COVID-19. Future studies are needed to explore the associations between selenium status and disease outcome at individual-level.


Asunto(s)
COVID-19/diagnóstico , Selenio/análisis , COVID-19/mortalidad , COVID-19/virología , China/epidemiología , Productos Agrícolas/química , Humanos , Micronutrientes/análisis , SARS-CoV-2/aislamiento & purificación , Selenio/deficiencia , Suelo/química , Análisis de Supervivencia
20.
Molecules ; 26(9)2021 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-33922183

RESUMEN

With a growing world population, accelerating climate changes, and limited arable land, it is critical to focus on plant-based resources for sustainable food production. In addition, plants are a cornucopia for secondary metabolites, of which many have robust antioxidative capacities and are beneficial for human health. Potato is one of the major food crops worldwide, and is recognized by the United Nations as an excellent food source for an increasing world population. Potato tubers are rich in a plethora of antioxidants with an array of health-promoting effects. This review article provides a detailed overview about the biosynthesis, chemical and health-promoting properties of the most abundant antioxidants in potato tubers, including several vitamins, carotenoids and phenylpropanoids. The dietary contribution of diverse commercial and primitive cultivars are detailed and document that potato contributes much more than just complex carbohydrates to the diet. Finally, the review provides insights into the current and future potential of potato-based systems as tools and resources for healthy and sustainable food production.


Asunto(s)
Antioxidantes/farmacología , Extractos Vegetales/farmacología , Solanum tuberosum/química , Antioxidantes/química , Antioxidantes/metabolismo , Productos Agrícolas/química , Productos Agrícolas/metabolismo , Redes y Vías Metabólicas , Estructura Molecular , Valor Nutritivo , Fenoles/química , Fenoles/metabolismo , Fenoles/farmacología , Fitoquímicos/química , Fitoquímicos/metabolismo , Fitoquímicos/farmacología , Extractos Vegetales/química , Metabolismo Secundario , Solanum tuberosum/metabolismo , Vitaminas/química , Vitaminas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA